Animal Husbandry and Veterinary Science
Commerce and Accountancy
Political Science and International Relations(PSIR)
Literature of Assamese
Literature of Bengali
Literature of Bodo
Literature of Dogri
Literature of Gujarati
Literature of Hindi
Literature of Kannada
Literature of Kashmiri
Literature of Konkani
Literature of Maithili
Literature of Malayalam
Literature of Manipuri
Literature of Marathi
Literature of Nepali
Literature of Oriya
Literature of Punjabi
Literature of Sanskrit
Literature of Santhali
Literature of Sindhi
Literature of Tamil
Literature of Telugu
Literature of Urdu
Literature of English
img1

01-01-1970

05:30:AM

249 Views

PAPER-I

 

1. Circuits—Theory:

  • Circuit components; network graphs; KCL, KVL; Circuit analysis methods: nodal analysis, mesh analysis; basic network theorems and applications; transient analysis: RL, RC and RLC circuits; sinusoidal steady state analysis; resonant circuits; coupled circuits; balanced 3-phase circuits. Two-port networks.


2. Signals and Systems:

  • Representation of continuous-time and discrete-time signals and systems; LTI systems; convolution; impulse response; time-domain analysis of LTI systems based on convolution and differential/difference equations. Fourier transform, Laplace transform, Z-transform, Transfer function. Sampling and recovery of signals DFT, FFT Processing of analog signals through discrete-time systems.

 

3. E.M. Theory : 

  • Maxwell’s equations, wave propagation in bounded media. Boundary conditions, reflection and refraction of plane waves. Transmission lines: travelling and standing waves, impedance matching, Smith chart.


4. Analog Electronics:

  • Characteristics and equivalent circuits (large and small-signal) of Diode, BJT, JFET and MOSFET. Diode circuits: Clipping, clamping, rectifier. Biasing and bias stability. FET amplifiers. Current mirror;
  • Amplifiers: single and multi-stage, differential, operational feedback and power. Analysis of amplifiers; frequency-response of amplifiers. OPAMP circuits. Filters; sinusoidal oscillators: criterion for oscillation; single-transistor and OPAMP configurations. Function generators and wave-shaping circuits. Linear and switching power supplies.

 

5. Digital Electronics : 

  • Boolean algebra; minimisation of Boolean functions; logic gates; digital IC families (DTL, TTL, ECL, MOS, CMOS). Combinational circuits: arithmetic circuits, code converters, multiplexers and decoders. Sequential circuits: latches and flip-flops, counters and shift-registers. Comparators, timers, multivibrators. Sample and hold circuits, ADCs and DACs. Semiconductor memories. Logic implementation using programmable devices (ROM, PLA, FPGA).

 

6. Energy Conversion:

  • Principles of electromechanical energy conversion: Torque and emf in rotating machines. DC machines: characteristics and performance analysis; starting and speed control of motors. Transformers: principles of operation and analysis; regulation, efficiency; 3-phase transformers. 3-phase induction machines and synchronous machines: characteristics and performance analysis; speed control.

 

7. Power Electronics and Electric Drives:

  • Semi-conductor power devices: diode, transistor, thyristor, triac, GTO and MOSFET-static characteristics and principles of operation; triggering circuits; phase control rectifiers; bridge converters: fully-controlled and half-controlled; principles of thyristor choppers and inverters; DC-DC converters; Switch mode inverter; basic concepts of speed control of dc and ac motor drives applications of variable speed drives.

 

8. Analog Communication : 

  • Random variables: continuous, discrete; probability, probability functions. Statistical averages; probability models; Random signals and noise: white noise, noise equivalent bandwidth; signal transmission with noise; signal to noise ratio. Linear CW modulation: Amplitude modulation: DSB, DSBSC and SSB. Modulators and Demodulators; Phase and Frequency modulation: PM & FM signals; narrows band FM; generation & detection of FM and PM, Deemphasis, Preemphasis. CW modulation system: Superhetrodyne receivers, AM receivers, communication receivers, FM receivers, phase locked loop, SSB receiver Signal to noise ratio calculation or AM and FM receivers.



PAPER II

 

1. Control Systems:

  • Elements of control systems; block-diagram representations; open-loop & closed-loop systems; principles and applications of feed-back. Control system components. LTI systems: time-domain and transform-domain analysis. Stability: Routh Hurwitz criterion, root-loci, Bode-plots and polor plots, NY Quist’s criterion; Design of lead-lad compensators. Proportional, PI, PID controllers. State-variable representation and analysis of control systems.

 

2. Microprocessors and Microcomputers:

  • PC organisation; CPU, instruction set, register set timing diagram, programming, interrupts, memory interfacing, I/O interfacing, programmable peripheral devices.

 

3. Measurement and Instrumentation:

  • Error analysis; measurement of current voltage, power, energy, power-factor, resistance, inductance, capacitance and frequency; bridge measurements. Signal conditioning circuit; Electronic measuring instruments: multimeter, CRO, digital voltmeter, frequency counter, Q-meter, spectrum analyser, distortion-meter. Transducers : thermocouple, thermistor, LVDT, strain-guage, piezo-electric crystal.

 

4. Power Systems: Analysis and Control:

  • Steady-state performance of overhead transmission lines and cables; principles of active and reactive power transfer and distribution; per-unit quantities; bus admittance and impedance matrices; load flow; voltage control and power factor correction; economic operation; symmetrical components, analysis of symmetrical and unsymmetrical faults. Concepts of system stability: swing curves and equal area criterion. Static VAR system. Basic concepts of HVDC transmission.


5. Power System Protection : 

  • Principles of overcurrent, differential and distance protection. Concept of solid state relays. Circuit breakers. Computer aided protection: introduction; line, bus, generator, transformer protection; numeric relays and application of DSP to protection.


6. Digital Communication:

  • Pulse code modulation (PCM), deferential pulse code modulation (DPCM), delta modulation (DM), Digital modulation and demodulation schemes : amplitude, phase and frequency keying schemes (ASK, PSK, FSK). Error control coding: error detection and correction, linear block codes, convolution codes. Information measure and source coding. Data networks, 7-layer architecture.

Comments

Recent Comments